Int J Med Inform. 2023 Oct 24;180:105270. doi: 10.1016/j.ijmedinf.2023.105270. Online ahead of print.


BACKGROUND: Preserving brain health is a critical priority in primary care, yet screening for these risk factors in face-to-face primary care visits is challenging to scale to large populations. We aimed to develop automated brain health risk scores calculated from data in the electronic health record (EHR) enabling population-wide brain health screening in advance of patient care visits.

METHODS: This retrospective cohort study included patients with visits to an outpatient neurology clinic at Massachusetts General Hospital, between January 2010 and March 2021. Survival analysis with an 11-year follow-up period was performed to predict the risk of intracranial hemorrhage, ischemic stroke, depression, death and composite outcome of dementia, Alzheimer’s disease, and mild cognitive impairment. Variables included age, sex, vital signs, laboratory values, employment status and social covariates pertaining to marital, tobacco and alcohol status. Random sampling was performed to create a training (70%) set for hyperparameter tuning in internal 5-fold cross validation and an external hold-out testing (30%) set of patients, both stratified by age. Risk ratios for high and low risk groups were evaluated in the hold-out test set, using 1000 bootstrapping iterations to calculate 95% confidence intervals (CI).

RESULTS: The cohort comprised 17,040 patients with an average age of 49 ± 15.6 years; majority were males (57 %), White (78 %) and non-Hispanic (80 %). The low and high groups average risk ratios [95 % CI] were: intracranial hemorrhage 0.46 [0.45-0.48] and 2.07 [1.95-2.20], ischemic stroke 0.57 [0.57-0.59] and 1.64 [1.52-1.69], depression 0.68 [0.39-0.74] and 1.29 [0.78-1.38], composite of dementia 0.27 [0.26-0.28] and 3.52 [3.18-3.81] and death 0.24 [0.24-0.24] and 3.96 [3.91-4.00].

CONCLUSIONS: Simple risk scores derived from routinely collected EHR accurately quantify the risk of developing common neurologic and psychiatric diseases. These scores can be computed automatically, prior to medical care visits, and may thus be useful for large-scale brain health screening.

PMID:37890202 | DOI:10.1016/j.ijmedinf.2023.105270