medRxiv. 2024 Feb 4:2024.02.02.24302228. doi: 10.1101/2024.02.02.24302228. Preprint.

ABSTRACT

Despite great progress on methods for case-control polygenic prediction (e.g. schizophrenia vs. control), there remains an unmet need for a method that genetically distinguishes clinically related disorders (e.g. schizophrenia (SCZ) vs. bipolar disorder (BIP) vs. depression (MDD) vs. control); such a method could have important clinical value, especially at disorder onset when differential diagnosis can be challenging. Here, we introduce a method, Differential Diagnosis-Polygenic Risk Score (DDx-PRS), that jointly estimates posterior probabilities of each possible diagnostic category (e.g. SCZ=50%, BIP=25%, MDD=15%, control=10%) by modeling variance/covariance structure across disorders, leveraging case-control polygenic risk scores (PRS) for each disorder (computed using existing methods) and prior clinical probabilities for each diagnostic category. DDx-PRS uses only summary-level training data and does not use tuning data, facilitating implementation in clinical settings. In simulations, DDx-PRS was well-calibrated (whereas a simpler approach that analyzes each disorder marginally was poorly calibrated), and effective in distinguishing each diagnostic category vs. the rest. We then applied DDx-PRS to Psychiatric Genomics Consortium SCZ/BIP/MDD/control data, including summary-level training data from 3 case-control GWAS ( N =41,917-173,140 cases; total N =1,048,683) and held-out test data from different cohorts with equal numbers of each diagnostic category (total N =11,460). DDx-PRS was well-calibrated and well-powered relative to these training sample sizes, attaining AUCs of 0.66 for SCZ vs. rest, 0.64 for BIP vs. rest, 0.59 for MDD vs. rest, and 0.68 for control vs. rest. DDx-PRS produced comparable results to methods that leverage tuning data, confirming that DDx-PRS is an effective method. True diagnosis probabilities in top deciles of predicted diagnosis probabilities were considerably larger than prior baseline probabilities, particularly in projections to larger training sample sizes, implying considerable potential for clinical utility under certain circumstances. In conclusion, DDx-PRS is an effective method for distinguishing clinically related disorders.

PMID:38352307 | PMC:PMC10862992 | DOI:10.1101/2024.02.02.24302228