Biol Psychiatry Glob Open Sci. 2024 Feb 28;4(3):100297. doi: 10.1016/j.bpsgos.2024.100297. eCollection 2024 May.

ABSTRACT

BACKGROUND: Patients with schizophrenia have substantial comorbidity that contributes to reduced life expectancy of 10 to 20 years. Identifying modifiable comorbidities could improve rates of premature mortality. Conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore are enriched for potentially modifiable associations.

METHODS: Phenome-wide comorbidity was calculated from electronic health records of 250,000 patients across 2 independent health care institutions (Vanderbilt University Medical Center and Mass General Brigham); associations with schizophrenia polygenic risk scores were calculated across the same phenotypes in linked biobanks.

RESULTS: Schizophrenia comorbidity was significantly correlated across institutions (r = 0.85), and the 77 identified comorbidities were consistent with prior literature. Overall, comorbidity and polygenic risk score associations were significantly correlated (r = 0.55, p = 1.29 × 10-118). However, directly testing for the absence of genetic effects identified 36 comorbidities that had significantly equivalent schizophrenia polygenic risk score distributions between cases and controls. This set included phenotypes known to be consequences of antipsychotic medications (e.g., movement disorders) or of the disease such as reduced hygiene (e.g., diseases of the nail), thereby validating the approach. It also highlighted phenotypes with less clear causal relationships and minimal genetic effects such as tobacco use disorder and diabetes.

CONCLUSIONS: This work demonstrates the consistency and robustness of electronic health record-based schizophrenia comorbidities across independent institutions and with the existing literature. It identifies known and novel comorbidities with an absence of shared genetic risk, indicating other causes that may be modifiable and where further study of causal pathways could improve outcomes for patients.

PMID:38645405 | PMC:PMC11033077 | DOI:10.1016/j.bpsgos.2024.100297