Diabetes. 2024 Mar 12:db230232. doi: 10.2337/db23-0232. Online ahead of print.

ABSTRACT

African Americans (AAs) have been underrepresented in polygenic risk score (PRS) studies. Herein, we integrated genome-wide data from multiple observational studies on type 2 diabetes (T2D), encompassing a total of 101,987 AAs, to train and optimize an AA focused T2D PRS (PRSAA), using a Bayesian polygenic modeling method (PRS-CS). We further tested the score in three independent studies with a total of 7,275 AAs. We then compared the PRSAA to other published scores. Results show that a 1 standard deviation increase in the PRSAA was associated with 40%-60% increase in the odds of T2D (OR=1.60, 95% CI 1.37-1.88; OR=1.40, 95% CI 1.16-1.70; and OR=1.45, 95% CI 1.30-1.62) across three testing cohorts. These models captured 1.0%-2.6% of the variance (R2) in T2D on the liability scale. The positive predictive values (PPV) for three calculated score thresholds (the top 2%, 5% 10%) ranged from 14% to 35%. The PRSAA, in general, performed similarly to existing T2D PRS. Larger datasets remain needed to continue to evaluate the utility of within-ancestry scores in the AA population.

PMID:38470993 | DOI:10.2337/db23-0232